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Abstract. Two global optimization algorithms are presented. Both algorithms attempt to minim-
ize an unconstrained objective function through the modeling of dynamic search trajectories. The
first, namely the Snyman–Fatti algorithm, originated in the 1980’s and still appears an effective
global optimization algorithm. The second algorithm is currently under development, and is denoted
the modified bouncing ball algorithm. For both algorithms, the search trajectories are modified to
increase the likelihood of convergence to a low local minimum. Numerical results illustrate the
effectiveness of both algorithms.
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1. Introduction

The problem of globally optimizing a real valued function is inherently intractable
(unless hard restrictions are imposed on the objective function) in that no practic-
ally useful characterization of the global optimum is available. Indeed, the problem
of determining an accurate estimate of the global optimum is mathematically ill-
posed in the sense that very similar objective functions may have global optima
very distant from each other [1]. Nevertheless, the need in practice to find a relative
low local minimum has resulted in considerable research over the last decade to
develop algorithms that attempt to find such a low minimum, e.g. see [2].

The general global optimization problem may be formulated as follows. Given
a real valued objective function f (x) defined on the set x ∈ D in IRn, find the point
x∗ and the corresponding function value f ∗ such that

f ∗ = f (x∗) = minimum {f (x)|x ∈ D} (1.1)

if such a point x∗ exists. If the objective function and/or the feasible domain D are
non-convex, then there may be many local minima which are not global.

If D corresponds to all IRn the optimization problem is unconstrained. Altern-
atively, simple bounds may be imposed, with D now corresponding to the hyper
�� An abbreviated version of this paper was read at the Conference on Discrete and Global
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box (or domain or region of interest) defined by

D = {x|� ≤ x ≤ u} (1.2)

where � and u are n-vectors defining the respective lower and upper bounds on x.
From a mathematical point of view, Problem (1.1) is essentially unsolvable, due

to a lack of mathematical conditions characterizing the global optimum, as opposed
to the local optimum of a smooth continuous function, which is characterized by
the behavior of the problem function (Hessians and gradients) at the minimum [3]
(viz. the Karush–Kuhn–Tucker conditions). Therefore, the global optimum f ∗ can
only be obtained by an exhaustive search, except if the objective function satisfies
certain subsidiary conditions [4], which mostly are of limited practical use [5].
Typically, the conditions are that f should satisfy a Lipschitz condition with known
constant L and that the search area is bounded, e.g. for all x, x̄ ∈ X

|f (x)− f (x̄)| ≤ L||x − x̄|| (1.3)

So-called space-covering deterministic techniques have been developed [6] under
these special conditions. These techniques are expensive, and due to the need to
know L, of limited practical use.

Global optimization algorithms are divided into two major classes [6]: determ-
inistic and stochastic (from the Greek word stokhastikos, i.e. ‘governed by the laws
of probability’). Deterministic methods can be used to determine the global op-
timum through exhaustive search. These methods are typically extremely expens-
ive. With the introduction of a stochastic element into deterministic algorithms,
the deterministic guarantee that the global optimum can be found is relaxed into
a confidence measure. Stochastic methods can be used to assess the probability
of having obtained the global minimum. Stochastic ideas are mostly used for the
development of stopping criteria, or to approximate the regions of attraction as
used by some methods [3].

The stochastic algorithms presented herein, namely the Snyman–Fatti algorithm
and the modified bouncing ball algorithm, both depend on dynamic search traject-
ories to minimize the objective function. The respective trajectories, namely the
motion of a particle of unit mass in a n-dimensional conservative force field, and
the trajectory of a projectile in a conservative gravitational field, are modified to
increase the likelihood of convergence to a low local minimum.

2. The Snyman–Fatti trajectory method

The essentials of the original SF algorithm [5] using dynamic search trajectories for
unconstrained global minimization will now be discussed. The algorithm is based
on the local algorithms presented in [7, 8]. For more details concerning the motiva-
tion of the method, its detailed construction, convergence theorems, computational
aspects and some of the more obscure heuristics employed, the reader is referred
to the original paper.
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2.1. DYNAMIC TRAJECTORIES

In the SF algorithm successive sample points xj , j = 1, 2, ..., are selected at
random from the box D defined by (2). For each sample point xj , a sequence
of trajectories T i, i = 1, 2, ..., is computed by numerically solving the successive
initial value problems:

ẍ(t) = −∇f (x(t))
x(0) = xi0 ; ẋ(0) = ẋi0

(2.4)

This trajectory represents the motion of a particle of unit mass in a n-dimensional
conservative force field, where the function to be minimized represents the poten-
tial energy.

Trajectory T i is terminated when x(t) reaches a point where f (x(t)) is arbit-
rarily close to the value f (x i0) while moving ‘uphill’, or more precisely, if x(t)

satisfies the conditions.

f (x(t)) > f (xi0)− εu
and ẋ(t)T∇f (x(t)) > 0

(2.5)

where εu is an arbitrary small prescribed positive value.
An argument is presented in [5] to show that when the level set {x|f (x) ≤

f (xi0)
}

is bounded and ∇f (xi0) 
= 0, then conditions (2.5) above will be satisfied
at some finite point in time.

Each computed step along trajectory T i is monitored so that at termination the
point xim at which the minimum value was achieved is recorded together with the
associated velocity ẋim and function value f im. The values of xim and ẋim are used to
determine the initial values for the next trajectory T i+1. From a comparison of the
minimum values the best point xib, for the current j over all trajectories to date is
also recorded. In more detail the minimization procedure for a given sample point
xj , in computing the sequence xib, i = 1, 2, ..., is as follows.

2.2. MINIMIZATION PROCEDURE MP1

1. For given sample point xj , set x1
0 := xj and compute T 1 subject to ẋ1

0 := 0 ;
record x1

m, ẋ
1
m and f 1

m ; set x1
b := x1

m and i := 2,
2. compute trajectory T i with xi0 := 1

2

(
xi−1

0 + xi−1
b

)
and ẋi0 := 1

2 ẋ
i−1
m , record

xim, ẋ
i
m and f im,

3. if f im < f (x
i−1
b ) then xib := xim ; else xib := xi−1

b ,
4. set i := i + 1 and go to 2.

In the original paper [5] an argument is presented to indicate that under normal
conditions on the continuity of f and its derivatives, xib will converge to a local
minimum. Procedure MP1, for a given j , is accordingly terminated at step 3 above
if ||∇f (xib)|| ≤ ε, for some small prescribed positive value ε, and xib is taken
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as the local minimizer x
j

f , i.e. set x
j

f := xib with corresponding function value

f
j

f := f (x
j

f ).
Reflecting on the overall approach outlined above, involving the computation of

energy conserving trajectories and the minimization procedure, it should be evident
that, in the presence of many local minima, the probability of convergence to a
relative low local minimum is increased. This one expects because, with a small
value of εu (see conditions (4)), it is likely that the particle will move through a
trough associated with a relative high local minimum, and move over a ridge to
record a lower function value at a point beyond. Since we assume that the level set
associated with the starting point function is bounded, termination of the search
trajectory will occur as the particle eventually moves to a region of higher function
values.

3. The modified bouncing ball trajectory method

The essentials of the modified bouncing ball algorithm using dynamic search tra-
jectories for unconstrained global minimization are now presented. The algorithm
is in an experimental stage, and details concerning the motivation of the method,
its detailed construction, and computational aspects will be presented in future.

3.1. DYNAMIC TRAJECTORIES

In the MBB algorithm successive sample points xj , j = 1, 2, ..., are selected at
random from the box D defined by (2). For each sample point xj , a sequence of
trajectory steps �xi and associated projection points xi+1, i = 1, 2, ..., are com-
puted from the successive analytical relationships (with x1 := xj and prescribed
V01 > 0):

�xi = V0i ti cos θi∇f (xi )/||∇f (xi)|| (3.6)

where:

θi = tan−1(||∇f (xi )||)+ π

2
, (3.7)

ti = 1

g

[
V0i sin θi +

{
(V0i sin θi)

2 + 2gh(xi )
}1/2

]
, (3.8)

h(xi) = f (xi)+ k (3.9)

with k a constant chosen such that h(x) > 0 ∀ x ∈ D, g a positive constant, and

x i+1 = xi + �xi (3.10)

For the next step, select V0i+1 < V0i . Each step �xi represents the ground or
horizontal displacement obtained by projecting a particle in a vertical gravitational
field (constant g) at an elevation h(xi) and speed V0i at an inclination θi . The angle
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θi represents the angle that the outward normal n to the hypersurface represented
by y = h(x)makes, at x i in n+1 dimensional space, with the horizontal. The time
of flight ti is the time taken to reach the ground corresponding to y = 0.

More formally, the minimization trajectory for a given sample point xj and
some initial prescribed speed V0 is obtained by computing the sequence xi , i =
1, 2, ..., as follows.

3.2. MINIMIZATION PROCEDURE MP2

1. For given sample point xj , set x1 := xj and compute trajectory step �x1

according to (3.6) – (3.9) and subject to V01 := V0; record x2 := x1 +�x1, set
i := 2 and V02 := αV01 (α < 1)

2. Compute �xi according to (3.6) – (3.9) to give xi+1 := xi + �xi , record xi+1

and set V0i+1 := αV0i
3. set i := i + 1 and go to 2

In the vicinity of a local minimum x̂ the sequence of projection points xi , i =
1, 2, ..., constituting the search trajectory for starting point xj will converge since
�xi → 0 (see (3.6)). In the presence of many local minima, the probability of
convergence to a relative low local minimum is increased, since the kinetic energy
can only decrease for α < 1.

Procedure MP2, for a given j , is successfully terminated if ||∇f (xi)|| ≤ ε for
some small prescribed positive value ε, or when αV i0 < βV 1

0 , and xi is taken as
the local minimizer x

j

f with corresponding function value f jf := h(x
j

f )− k.
Clearly, the condition αV i0 < βV 1

0 will always occur for 0 < β < α and
0 < α < 1.

MP2 can be viewed as a variant of the steepest descent algorithm. However, as
opposed to steepest descent, MP2 has (as has MP1) the ability for ‘hill-climbing’,
as is inherent in the physical model on which MP2 is based (viz., the trajectories of
a bouncing ball in a conservative gravitational field.) Hence, the behavior of MP2
is quite different from that of steepest descent and furthermore, because of it’s
physical basis, it tends to seek local minima with relative low function values and
is therefore suitable for implementation in global searches, while steepest descent
is not.

For the MBB algorithm, convergence to a local minimum is not proven. Instead,
the underlying physics of a bouncing ball is exploited. Unsuccessful trajectories
are terminated, and do not contribute to the probabilistic stopping criterion (al-
though these points are included in the number of unsuccessful trajectories ñ.) In
the validation of the algorithm, the philosophy adopted here is that the practical
demonstration of convergence of a proposed algorithm on a variety of demanding
test problems may be as important and convincing as a rigorous mathematical con-
vergence argument. Indeed, although for the steepest descent method convergence
can be proven, in practice it often fails to converge because effectively an infinite
number of steps is required for convergence.
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4. Global stopping criterion

The above methods require a termination rule for deciding when to end the sampling
and to take the current overall minimum function value f̃ , i.e.

f̃ = minimum
{
f
j

f , over all j to date
}

(4.11)

as the global minimum value f ∗.
Define the region of convergence of the dynamic methods for a local minimum

x̂ as the set of all points x which, used as starting points for the above procedures,
converge to x̂. One may reasonably expect that in the case where the regions of
attraction (for the usual gradient-descent methods, see [9]) of the local minima are
more or less equal, that the region of convergence of the global minimum will be
relatively increased.

Let Rk denote the region of convergence for the above minimization procedures
MP1 and MP2 of local minimum x̂

k and let αk be the associated probability that
a sample point be selected in Rk. The region of convergence and the associated
probability for the global minimum x∗ are denoted by R∗ and α∗, respectively. The
following basic assumption, which is probably true for many functions of practical
interest, is now made.

A. Basic assumption:

α∗ ≥ αk for all local minima x̂
k
. (4.12)

The following theorem may be proved (see Appendix A).
B. Theorem: (Ref. [5]): Let r be the number of sample points falling within

the region of convergence of the current overall minimum f̃ after ñ points have
been sampled. Then under assumption A and a statistically non-informative prior
distribution the probability that f̃ corresponds to f ∗ may be obtained from:

Pr
[
f̃ = f ∗

]
≥ q(ñ, r) = 1 − (ñ+ 1)!(2ñ − r)!

(2ñ+ 1)!(ñ− r)! (4.13)

On the basis of this theorem the stopping rule becomes: STOP when Pr
[
f̃ =f ∗

]
≥

q∗, where q∗ is some prescribed desired confidence level, typically chosen as 0.99.

5. Numerical results

The test functions used are tabulated in Table I, and tabulated numerical results are
presented in Tables II and III. In the tables, the reported number of function values
Nf are the average of 10 independent (random) starts of each algorithm.

Unless otherwise stated, the following settings were used in the SF algorithm
(see [5]): γ = 2.0, α = 0.95, ε = 10−2, ω = 10−2, δ = 0.0, q∗ = 0.99, and
't = 1.0. For the MBB algorithm, α = 0.99, ε = 10−4, and q∗ = 0.99 were used.
For each problem, the initial velocity V0 was chosen such that �x1 was equal to
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Table I. The test functions

No. Name ID n Ref.

1 Griewank G1 G1 2 [2, 4]

2 Griewank G2 G2 10 [2, 4]

3 Goldstein–Price GP 2 [2, 10]

4 Six-hump Camelback C6 2 [2, 11]

5 Shubert, Levi No. 4 SH 2 [12]

6 Branin BR 2 [2, 13]

7 Rastrigin RA 2 [2]

8 Hartman 3 H3 3 [2, 10]

9 Hartman 6 H6 6 [2, 10]

10 Shekel 5 S5 4 [2, 10]

11 Shekel 7 S7 4 [2, 10]

12 Shekel 10 S10 4 [2, 10]

Table II. Numerical results

No. ID SF – This study Ref. [5] MBB

Nf (r/ñ)b (r/ñ)w Nf r/ñ Nf (r/ñ)b (r/ñ)w

1 G1 4199 6/40 6/75 1606 6/20 2629 5/8 6/23

2 G2 25969 6/84 6/312 26076 6/60 19817 6/24 6/69

3 GP 2092 4/4 5/12 668 4/4 592 4/4 5/10

4 C6 426 4/4 5/9 263 4/4 213 4/4 5/10

5 SH 8491 6/29 6/104 — — 1057 5/7 6/26

6 BR 3922 4/4 5/12 — — 286 4/4 5/6

7 RA 4799 6/67 6/117 — — 1873 4/4 6/42

8 H3 933 4/4 5/8 563 5/6 973 5/9 6/29

9 H6 1025 4/4 5/10 871 5/8 499 4/4 5/9

10 S5 1009 4/4 6/24 1236 6/17 2114 5/8 6/39

11 S7 1057 5/8 6/37 1210 6/17 2129 6/16 6/47

12 S10 845 4/4 6/31 1365 6/20 1623 5/7 6/39

half the ‘radius’ of the domain D. A local search strategy was implemented with
varying α in the vicinity of local minima.

In Table II, (r/ñ)b and (r/ñ)w respectively indicate the best and worst r/ñ
ratios (see Equation (4.13)), observed during 10 independent optimization runs
of both algorithms. The SF results compare well with the previously published
results by Snyman and Fatti, who reported values for a single run only. For the
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Table III. Cost (Nf ) using a priori stopping condi-
tion

Method Test function

BR C6 GP RA SH H3

TRUST 55 31 103 59 72 58

MBB 25 29 74 168 171 24

Shubert, Branin and Rastrigin functions, the MBB algorithm is superior to the SF
algorithm. For the Shekel functions (S5, S7 and S10), the SF algorithm is superior.
As a result of the stopping criterion (4.13), the SF and MBB algorithms found the
global optimum between 4 and 6 times for each problem.

The results for the trying Griewank functions (Table II) are encouraging. G1
has some 500 local minima in the region of interest, and G2 several thousand. The
values used for the parameters are as specified, with't = 5.0 for G1 and G2 in the
SF-algorithm. It appears that both the SF and MBB algorithms are highly effective
for problems with a large number of local minima in D, and problems with a large
number of design variables.

In Table III the MBB algorithm is compared with the recently published determ-
inistic TRUST algorithm [14]. Since the TRUST algorithm was terminated when
the global approximation was within a specified tolerance of the (known) global
optimum, a similar criterion was used for the MBB algorithm. The table reveals
that the two algorithms compare well. Note, however, that the highest dimension
of the test problems used in [14] is 3. It is unclear if the deterministic TRUST
algorithm will perform well for problems of large dimension, or problems with a
large number of local minima in D.

6. Conclusions

Two stochastic global optimization methods based on dynamic search trajectories
are presented. The algorithms are the Snyman–Fatti trajectory method and the
modified bouncing ball trajectory method. Numerical results indicate that both
algorithms are effective in finding the global optimum efficiently. In particular,
the results for the trying Griewank functions are encouraging. Both algorithms
appear effective for problems with a large number of local minima in the domain,
and problems with a large number of design variables. A salient feature of the
algorithms is the availability of an apparently effective global stopping criterion.
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Appendix

A. Proof of stopping criterion

We present here an outline of the proof of (4.13), and follow closely the presenta-
tion in [5]. (We have since learned that the proof can be shown to be a generaliza-
tion of the procedure proposed by Zielinski [15].) Given ñ∗ and α∗, the probability
that at least one point, ñ ≥ 1, has converged to f ∗ is:

Pr[ñ∗ ≥ 1|ñ, r] = 1 − (1 − α∗)ñ . (1.14)

In the Bayesian approach, we characterize our uncertainty about the value of α∗
by specifying a prior probability distribution for it. This distribution is modified
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using the sample information (namely, ñ and r) to form a posterior probability
distribution. Let p∗(α∗|ñ, r) be the posterior probability distribution of α∗. Then,

Pr[ñ∗ ≥ 1|ñ, r] =
∫ 1

0

[
1 − (1 − α∗)ñ

]
p∗(α∗|ñ, r)dα∗

= 1 −
∫ 1

0
(1 − α∗)ñp∗(α∗|ñ, r)dα∗. (1.15)

Now, although the r sample points converge to the current overall minimum, we do
not know whether this minimum corresponds to the global minimum of f ∗. Utiliz-
ing (4.12), and noting that (1 − α)ñ is a decreasing function of α, the replacement
of α∗ in the above integral by α yields

Pr[ñ∗ ≥ 1|ñ, r] ≥
∫ 1

0

[
1 − (1 − α)ñ

]
p(α|ñ, r)dα . (1.16)

Now, using Bayes theorem we obtain:

p(α|ñ, r) = p(r|α, ñ)p(α)∫ 1
0 p(r|α, ñ)p(α) dα

. (1.17)

Since the ñ points are sampled at random and each point has a probability α of
converging to the current overall minimum, r has a binomial distribution with
parameters α and ñ. Therefore:

p(r|α, ñ) =
(
ñ

r

)
αr(1 − α)ñ−r . (1.18)

Substituting (1.18) and (1.17) into (1.16) gives:

Pr[ñ∗ ≥ 1|ñ, r] ≥ 1 −
∫ 1

0 α
r(1 − α)2ñ−rp(α) dα∫ 1

0 α
r(1 − α)ñ−rp(α) dα

. (1.19)

A suitable flexible prior distribution p(α) for α is the beta distribution with para-
meters a and b. Hence:

p(α) = [
1/β(a, b)

]
αa−1(1 − α)b−1, 0 ≤ α ≤ 1 (1.20)

Using this prior distribution gives:

Pr[ñ∗ ≥ 1|ñ, r] ≥ 1 − +(ñ+ a + b) +(2ñ − r + b)

+(2ñ + a + b) +(ñ− r + b)

= 1 − (ñ+ a + b − 1)! (2ñ − r + b − 1)!
(2ñ + a + b − 1)! (ñ− r + b − 1)! ,

Assuming a prior expectation of 1, (viz. a = b = 1), we obtain:

Pr[ñ∗ ≥ 1|ñ, r] = 1 − (ñ+ 1)! (2ñ− r)!
(2ñ + 1)! (ñ− r)! ,

which is the required result.


